Welcome to our Support Center

Convolution 1D Transpose


Define the convolution 1D transpose layer according to its parameters. To be used for the TimeDistributed layer. Type : polymorphic.


Input parameters


parameters : layer parameters.

ย n_filters :ย integer, the dimensionality of the output space.
Default value โ€œ3โ€.
ย sizeย :ย integer, specify the length of the 1D convolution window.
Default value โ€œ3โ€.
ย strideย :ย integer, specify the stride length of the convolution.
Default value โ€œ1โ€.
ย activationย :ย enum, activation function to use.
Default value โ€œreluโ€.
ย use_bias? :ย boolean, whether the layer uses a bias vector.
Default value โ€œTrueโ€.
ย paddingย :ย boolean, False = โ€œvalidโ€ means no padding. True = โ€œsameโ€ results in padding with zeros evenly to the left/right or up/down of the input such that output has the same height/width dimension as the input.
Default value โ€œFalseโ€.
ย data_format :ย enum, one ofย channels_lastย orย channels_firstย (default) . The ordering of the dimensions in the inputs.ย channel_lastย corresponds to inputs with shapeย (batch, steps, features)ย whileย channels_firstย corresponds to inputs with shapeย (batch, features, steps).
Default value โ€œchannels_firstโ€.
ย optimizer :

ย algorithmย :ย enum, (name of optimizer) for optimizer instance.
Default value โ€œadamโ€.
ย learning_rate :ย float, define the learning rate to use.
Default value โ€œ0.001โ€.
ย beta_1 :ย float, define the exponential decay rate for the 1st moment estimates.
Default value โ€œ0.9โ€.
ย beta_2 :ย float, define the exponential decay rate for the 2nd moment estimates.
Default value โ€œ0.999โ€.

ย filter_initializerย :ย enum, initializer for the kernel weights matrix.
Default value โ€œglorot_uniformโ€.
ย bias_initializerย :ย enum, initializer for the bias vector.
Default value โ€œzeroโ€.
ย training?ย :ย boolean, whether the layer is in training mode (can store data for backward).
Default value โ€œTrueโ€.
ย store?ย :ย boolean, whether the layer stores the last iteration gradient (accessible via the โ€œget_gradientsโ€ function).
Default value โ€œFalseโ€.
ย update?ย :ย boolean, whether the layerโ€™s variables should be updated during backward. Equivalent to freeze the layer.
Default value โ€œTrueโ€.
ย lda_coeff :ย float, defines the coefficient by which the loss derivative will be multiplied before being sent to the previous layer (since during the backward run we go backwards).
Default value โ€œ1โ€.


Output parameters


Conv1DTranspose out : layer convolution 1D transpose architecture.


All these exemples are snippets PNG, you can drop these Snippet onto the block diagram and get the depicted code added to your VI (Do not forget to install HAIBAL library to run it).

Convolution 1D Transpose layer inside TimeDistributed layer

1 โ€“ Generate a set of data

We generate an array of data of type single and shape [batch_size = 10, time = 6, channel = 5, width = 128] (channel first default layer configuration).
In case of channel last layer configuration, shape is [batch_size, time, width, channel].

2 โ€“ Define graph

First, we define the first layer of the graph which is an Input layer (explicit input layer method). This layer is setup as an input array shaped [channel = 5, width = 128].
Then, we add to the graph the TimeDistributed layer which we setup with a Conv1DTranspose layer using the define method.

3 โ€“ Run graph

We call the forward method and retrieve the result with the โ€œPrediction 4Dโ€ method.
This method returns two variables, the first one is the layer information (cluster composed of the layer name, the graph index and the shape of the output layer) and the second one is the prediction with a shape of [batch_size, time, filter, new_width].


Table of Contents