Welcome to our Support Center

MaxPool2D

Description

Setup and add the max pooling 2D layer into the model during the definition graph step. Type : polymorphic.

 

Input parameters

 

Graph in : model architecture.

 parameters : layer parameters.

 size : integer array, window size over which to take the maximum. (2, 2) will take the max value over a 2×2 pooling window. If only one integer is specified, the same window length will be used for both dimensions.
Default value “[2,2]”.
 stride : integer array, strides values. Specifies how far the pooling window moves for each pooling step.
Default value “[0,0]”.
 padding : boolean, “valid“or “same“. “valid” means no padding. “same” results in padding evenly to the left/right or up/down of the input such that output has the same height/width dimension as the input.
Default value “False”.
 data_format : enum, one of channels_last or channels_first (default) . The ordering of the dimensions in the inputs. channels_last corresponds to inputs with shape (batch, height, width, channels) while channels_first corresponds to inputs with shape (batch, channels, height, width).
Default value “channels_first”.
 training? : boolean, whether the layer is in training mode (can store data for backward).
Default value “True”.
 lda_coeff : float, defines the coefficient by which the loss derivative will be multiplied before being sent to the previous layer (since during the backward run we go backwards).
Default value “1”.

 in/out param :

 input_shape : integer array, shape (not including the batch axis). NB : To be used only if it is the first layer of the model.
 output_behavior : enum, setup if the layer is an output layer.
Default “Not Output”​.

name (optional) : string, name of the layer.

 

Output parameters

 

Graph out : model architecture.

Dimension

Input shape

4D tensor with shape :

  • If data_format = ‘channels_last’ : (batch_size, rows, cols, channels).
  • If data_format = ‘channels_first’ : (batch_size, channels, rows, cols).

Output shape

4D tensor with shape :

  • If data_format = ‘channels_last’ : (batch_size, pooled_rows, pooled_cols, channels).
  • If data_format = ‘channels_first’ : (batch_size, channels, pooled_rows, pooled_cols).

Example

All these exemples are snippets PNG, you can drop these Snippet onto the block diagram and get the depicted code added to your VI (Do not forget to install HAIBAL library to run it).

MaxPool2D layer

1 – Generate a set of data

We generate an array of data of type single and shape [batch size = 10, channels = 7, rows = 5, cols = 3].

2 – Define graph

First, we define the first layer of the graph which is an Input layer (explicit input layer method). This layer is setup as an input array shaped [channels = 7, rows = 5, cols = 3].
Then we add to the graph the MaxPool2D layer.

3 – Run graph

We call the forward method and retrieve the result with the “Prediction 4D” method.
This method returns two variables, the first one is the layer information (cluster composed of the layer name, the graph index and the shape of the output layer) and the second one is the prediction with a shape of [batch_size, channels, pooled_rows, pooled_cols].

 

MaxPool2D layer, batch and dimension

1 – Generate a set of data

We generate an array of data of type single and shape [number of batch = 9, batch size = 10, channels = 7, rows = 5, cols = 3].

2 – Define graph

First, we define the first layer of the graph which is an Input layer (explicit input layer method). This layer is setup as an input array shaped [channels = 7, rows = 5, cols = 3].
Then we add to the graph the MaxPool2D layer.

3 – Run graph

We call the forward method and retrieve the result with the “Prediction 4D” method.
This method returns two variables, the first one is the layer information (cluster composed of the layer name, the graph index and the shape of the output layer) and the second one is the prediction with a shape of [batch_size, channels, pooled_rows, pooled_cols].

 

Table of Contents