Welcome to our Support Center

Embedding

Description

Setup and add the embedding layer into the model during the definition graph step. Type : polymorphic.

 

Input parameters

 

Β Graph in : model architecture.

parameters : layer parameters.

input_dimΒ : integer, size of the vocabulary (maximum integer index + 1).
output_dim : integer, dimension of the dense embedding.
embeddings_initializerΒ : enum, initializer for the depthwise kernel matrix.
Default value “RandomUniform”.
optimizer :

Β algorithm : enum, (name of optimizer) for optimizer instance.
Default value “adam”.
learning_rate : float, define the learning rate to use.
Default value “0.001”.
beta_1 : float, define the exponential decay rate for the 1st moment estimates.
Default value “0.9”.
beta_2 : float, define the exponential decay rate for the 2nd moment estimates.
Default value “0.999”.

training?Β : boolean, whether the layer is in training mode (can store data for backward).
Default value “True”.
store?Β : boolean, whether the layer stores the last iteration gradient (accessible via the “get_gradients” function).
Default value “False”.
update?Β : boolean, whether the layer’s variables should be updated during backward. Equivalent to freeze the layer.
Default value “True”.
lda_coeff : float, defines the coefficient by which the loss derivative will be multiplied before being sent to the previous layer (since during the backward run we go backwards).
Default value “1”.

in/out param :

input_shape : integer array, shape (not including the batch axis). NB : To be used only if it is the first layer of the model.
Β output_behaviorΒ :Β enum, setup if the layer is an output layer.
Default β€œNot Output”​​.

name (optional) : string, name of the layer.

 

Output parameters

 

Β Graph out : model architecture.

Dimension

Input shape

2D tensor with shape : (batch_size, input_length).

 

Output shape

3D tensor with shape : (batch_size, input_length, output_dim).

Example

All these exemples are snippets PNG, you can drop these Snippet onto the block diagram and get the depicted code added to your VI (Do not forget to install HAIBAL library to run it).

Embedding layer with explicit input layer

1 – Generate a set of data

We generate an array of data of type single and shape [batch_size = 10, input_length = 5].

2 – Define graph

First, we define the first layer of the graph which is an Input layer (explicit input layer method). This layer is setup as an input array shaped [input_length = 5].
Then we add to the graph the Embedding layer.

3 – Run graph

We call the forward method and retrieve the result with the β€œPrediction 3D” method.
This method returns two variables, the first one is the layer information (cluster composed of the layer name, the graph index and the shape of the output layer) and the second one is the prediction with a shape of [batch_size, input_length, output_dim].

 

Embedding layer with implicit input layer

1 – Generate a set of data

We generate an array of data of type single and shape [batch_size = 10, input_length = 5].

2 – Define graph

First, we define the Embedding layer as the input layer of the graph (implicit input layer method). To do this, we send in the β€œinput_shape” variable of the β€œin/out param” cluster an array of shape [input_length = 5].
An input layer will be implicitly created and the name of this input layer will be the same name as its parent prefixed with β€œinput_”.
Then we add to the graph the Embedding layer.

3 – Run graph

We call the forward method and retrieve the result with the β€œPrediction 3D” method.
This method returns two variables, the first one is the layer information (cluster composed of the layer name, the graph index and the shape of the output layer) and the second one is the prediction with a shape of [batch_size, input_length, output_dim].

 

Embedding layer, batch and dimension

1 – Generate a set of data

We generate an array of data of type single and shape [number of batch = 9, batch_size = 10, input_length = 5].

2 – Define graph

First, we define the first layer of the graph which is an Input layer (explicit input layer method). This layer is setup as an input array shaped [input_length = 5].
Then we add to the graph the Embedding layer.

3 – Run graph

We call the forward method and retrieve the result with the β€œPrediction 3D” method.
This method returns two variables, the first one is the layer information (cluster composed of the layer name, the graph index and the shape of the output layer) and the second one is the prediction with a shape of [batch_size, input_length, output_dim].

 

Table of Contents
Index