-
Quick start
-
API
-
-
-
- Get All Grad
- Get Grad by index
- Get Grad by name
- Get All Store Grad
- Get Store Grad by index
- Get Store Grad by name
- Get All Index/Name
- Get Index by name
- Get Name by index
- Get All "lda_coeff"
- Get "lda_coeff" by index
- Get "lda_coeff" by name
- Get All Layer Params
- Get Layer Params by index
- Get Layer Params by name
- Get All Opti Params
- Get Opti Params by index
- Get Opti Params by name
- Get All Train Status
- Get Train Status by index
- Get Train Status by name
- Get All Loss Type
- Get Model Name
- Get Platform
- Warning Param
- Get All Input Layer Shape
- Get All Output Layer Shape
- Get All Input Shape
- Get Input Shape by index
- Get Input Shape by name
- Get All Output Shape
- Get Output Shape by index
- Get Output Shape by name
- Get All Init Weight
- Get Init Weight by index
- Get Init Weight by name
- Get All Weights
- Get Weights by index
- Get Weights by name
- Get All Weights Shape
- Get Weights Shape by index
- Get Weights Shape by name
- Get All Update Weights
- Get Update Weights by index
- Get Update Weights by name
- Show All Articles ( 30 ) Collapse Articles
-
- Set All Store Grad
- Set Store Grad by index
- Set Store Grad by name
- Set All "lda_coeff"
- Set "lda_coeff" by index
- Set "lda_coeff" by name
- Set All Opti Params
- Set Opti Params by index
- Set Opti Params by name
- Set All Train Status
- Set Train Status by index
- Set Train Status by name
- Set All Loss Type
- Set Model Name
- Set Platform
- Warning Param
- Set All Update Weights
- Set Update Weights by index
- Set Update Weights by name
- Load All Weights
- Load All Weights Model
- Set All Random Weights
- Set Weights by index
- Set Weights by name
- Show All Articles ( 9 ) Collapse Articles
-
-
-
-
- PReLU 2D
- PReLU 3D
- PReLU 4D
- PReLU 5D
- AdditiveAttention
- Attention
- MutiHeadAttention
- Conv1D
- Conv2D
- Conv3D
- ConvLSTM1D
- ConvLSTM2D
- ConvLSTM3D
- Conv1DTranspose
- Conv2DTranspose
- Conv3DTranspose
- DepthwiseConv2D
- SeparableConv1D
- SeparableConv2D
- Dense
- Embedding
- BatchNormalization
- LayerNormalization
- Bidirectional
- GRU
- LSTM
- SimpleRNN
- Show All Articles ( 12 ) Collapse Articles
-
- PReLU 2D
- PReLU 3D
- PReLU 4D
- PReLU 5D
- AdditiveAttention
- Attention
- MultiHeadAttention
- Conv1D
- Conv2D
- Conv3D
- ConvLSTM1D
- ConvLSTM2D
- ConvLSTM3D
- Conv1DTranspose
- Conv2DTranspose
- Conv3DTranspose
- DepthwiseConv2D
- SeparableConv1D
- SeparableConv2D
- Dense
- Embedding
- BatchNormalization
- LayerNormalization
- Bidirectional
- GRU
- LSTM
- SimpleRNN
- Show All Articles ( 12 ) Collapse Articles
-
-
- PReLU 2D
- PReLU 3D
- PReLU 4D
- PReLU 5D
- AdditiveAttention
- Attention
- MultiHeadAttention
- Conv1D
- Conv2D
- Conv3D
- ConvLSTM1D
- ConvLSTM2D
- ConvLSTM3D
- Conv1DTranspose
- Conv2DTranspose
- Conv3DTranspose
- DepthwiseConv2D
- SeparableConv1D
- SeparableConv2D
- Dense
- Embedding
- BatchNormalization
- LayerNormalization
- Bidirectional
- GRU
- LSTM
- SimpleRNN
- Show All Articles ( 12 ) Collapse Articles
-
-
- PReLU 2D
- PReLU 3D
- PReLU 4D
- PReLU 5D
- AdditiveAttention
- Attention
- MultiHeadAttention
- Conv1D
- Conv2D
- Conv3D
- ConvLSTM1D
- ConvLSTM2D
- ConvLSTM3D
- Conv1DTranspose
- Conv2DTranspose
- Conv3DTranspose
- DepthwiseConv2D
- SeparableConv1D
- SeparableConv2D
- Dense
- Embedding
- BatchNormalization
- LayerNormalization
- Bidirectional
- GRU
- LSTM
- SimpleRNN
- Show All Articles ( 12 ) Collapse Articles
-
- PReLU 2D
- PReLU 3D
- PReLU 4D
- PReLU 5D
- AdditiveAttention
- Attention
- MultiHeadAttention
- Conv1D
- Conv2D
- Conv3D
- ConvLSTM1D
- ConvLSTM2D
- ConvLSTM3D
- Conv1DTranspose
- Conv2DTranspose
- Conv3DTranspose
- DepthwiseConv2D
- SeparableConv1D
- SeparableConv2D
- Dense
- Embedding
- BatchNormalization
- LayerNormalization
- Bidirectional
- GRU
- LSTM
- SimpleRNN
- Show All Articles ( 12 ) Collapse Articles
-
-
-
-
- Add
- AdditiveAttention
- AlphaDropout
- Attention
- Average
- AvgPool1D
- AvgPool2D
- AvgPool3D
- BatchNormalization
- Bidirectional
- Concatenate
- Conv1D
- Conv1DTranspose
- Conv2D
- Conv2DTranspose
- Conv3D
- Conv3DTranspose
- ConvLSTM1D
- ConvLSTM2D
- ConvLSTM3D
- Cropping1D
- Cropping2D
- Cropping3D
- Dense
- DepthwiseConv2D
- Dropout
- Embedding
- Flatten
- GaussianDropout
- GaussianNoise
- GlobalAvgPool1D
- GlobalAvgPool2D
- GlobalAvgPool3D
- GlobalMaxPool1D
- GlobalMaxPool2D
- GlobalMaxPool3D
- GRU
- Input
- LayerNormalization
- LSTM
- MaxPool1D
- MaxPool2D
- MaxPool3D
- MultiHeadAttention
- Multiply
- Permute3D
- Reshape
- RNN
- SeparableConv1D
- SeparableConv2D
- SimpleRNN
- SatialDropout
- Substract
- TimeDistributed
- UpSampling1D
- UpSampling2D
- UpSampling3D
- ZeroPadding1D
- ZeroPadding2D
- ZeroPadding3D
- Show All Articles ( 45 ) Collapse Articles
-
- AlphaDropout
- AvgPool1D
- AvgPool2D
- AvgPool3D
- BatchNormalization
- Bidirectional
- Conv1D
- Conv1DTranspose
- Conv2D
- Conv2DTranspose
- Conv3D
- Conv3DTranspose
- Cropping1D
- Cropping2D
- Cropping3D
- Dense
- DepthwiseConv2D
- Dropout
- Embedding
- Flatten
- GaussianDropout
- GaussianNoise
- GlobalAvgPool1D
- GlobalAvgPool2D
- GlobalAvgPool3D
- GlobalMaxPool1D
- GlobalMaxPool2D
- GlobalMaxPool3D
- GRU
- LayerNormalization
- LSTM
- MaxPool1D
- MaxPool2D
- MaxPool3D
- Permute3D
- Reshape
- RNN
- SeparableConv1D
- SeparableConv2D
- SimpleRNN
- SpatialDropout
- UpSampling1D
- UpSampling2D
- UpSampling3D
- ZeroPadding1D
- ZeroPadding2D
- ZeroPadding3D
- Show All Articles ( 32 ) Collapse Articles
-
-
-
Useful links
We are proud to offer the deep learning experience with LabVIEW to our valued customers. In order to make this experience a success, we offer to guide you with these useful links by quickly introducing you to our services.
Starting pages
As you will need to start quickly with HAIBAL, we provide a basic tutorial on this page, helping you to define the model, launch it and train it easily.
Of course if you want to download the toolkit just go to this page.
The Examples guide page will also help you find examples of how to use HAIBAL.
And a page dedicated to application examples is available and often updated!
About the Support Community
If you are having trouble using HAIBAL, the HAIBAL Community is a peer-to-peer support and collaboration community of volunteers.
The community serves as a meeting place where you can post any questions, thoughts, or suggestions you have about HAIBAL.
Finally Haibal is often updated and on this page you can find all the release notes of HAIBAL. We will keep you informed by email at each update.