-
Quick start
-
API
-
-
-
-
-
-
- Dense
- PReLU 2D
- PReLU 3D
- PReLU 4D
- PReLU 5D
- AdditiveAttention
- Attention
- MutiHeadAttention
- Conv1D
- Conv2D
- Conv3D
- ConvLSTM1D
- ConvLSTM2D
- ConvLSTM3D
- Conv1DTranspose
- Conv2DTranspose
- Conv3DTranspose
- DepthwiseConv2D
- SeparableConv1D
- SeparableConv2D
- Embedding
- BatchNormalization
- LayerNormalization
- Bidirectional
- GRU
- LSTM
- SimpleRNN
- Show All Articles ( 12 ) Collapse Articles
-
- Dense
- PReLU 2D
- PReLU 3D
- PReLU 4D
- PReLU 5D
- AdditiveAttention
- Attention
- MultiHeadAttention
- Conv1D
- Conv2D
- Conv3D
- ConvLSTM1D
- ConvLSTM2D
- ConvLSTM3D
- Conv1DTranspose
- Conv2DTranspose
- Conv3DTranspose
- DepthwiseConv2D
- SeparableConv1D
- SeparableConv2D
- Embedding
- BatchNormalization
- LayerNormalization
- Bidirectional
- GRU
- LSTM
- SimpleRNN
- Show All Articles ( 12 ) Collapse Articles
-
-
- Dense
- AdditiveAttention
- Attention
- MultiHeadAttention
- BatchNormalization
- LayerNormalization
- Bidirectional
- GRU
- LSTM
- SimpleRNN
- Conv1D
- Conv2D
- Conv3D
- Conv1DTranspose
- Conv2DTranspose
- Conv3DTranspose
- ConvLSTM1D
- ConvLSTM2D
- ConvLSTM3D
- DepthwiseConv2D
- SeparableConv1D
- SeparableConv2D
- Embedding
- PReLU 2D
- PReLU 3D
- PReLU 4D
- PReLU 5D
- Show All Articles ( 12 ) Collapse Articles
-
-
- Dense
- Embedding
- AdditiveAttention
- Attention
- MultiHeadAttention
- Conv1D
- Conv2D
- Conv3D
- ConvLSTM1D
- ConvLSTM2D
- ConvLSTM3D
- Conv1DTranspose
- Conv2DTranspose
- Conv3DTranspose
- DepthwiseConv2D
- SeparableConv1D
- SeparableConv2D
- BatchNormalization
- LayerNormalization
- PReLU 2D
- PReLU 3D
- PReLU 4D
- PReLU 5D
- Bidirectional
- GRU
- LSTM
- RNN (GRU)
- RNN (LSTM)
- RNN (SimpleRNN)
- SimpleRNN
- Show All Articles ( 15 ) Collapse Articles
-
- Dense
- Embedding
- AdditiveAttention
- Attention
- MultiHeadAttention
- Conv1D
- Conv2D
- Conv3D
- ConvLSTM1D
- ConvLSTM2D
- ConvLSTM3D
- Conv1DTranspose
- Conv2DTranspose
- Conv3DTranspose
- DepthwiseConv2D
- SeparableConv1D
- SeparableConv2D
- BatchNormalization
- LayerNormalization
- PReLU 2D
- PReLU 3D
- PReLU 4D
- PReLU 5D
- Bidirectional
- GRU
- LSTM
- RNN (GRU)
- RNN (LSTM)
- RNN (SimpleRNN)
- SimpleRNN
- Show All Articles ( 15 ) Collapse Articles
-
-
-
- Dense
- Embedding
- AdditiveAttention
- Attention
- MultiHeadAttention
- Conv1D
- Conv2D
- Conv3D
- ConvLSTM1D
- ConvLSTM2D
- ConvLSTM3D
- Conv1DTranspose
- Conv2DTranspose
- Conv3DTranspose
- DepthwiseConv2D
- SeparableConv1D
- SeparableConv2D
- BatchNormalization
- LayerNormalization
- PReLU 2D
- PReLU 3D
- PReLU 4D
- PReLU 5D
- Bidirectional
- GRU
- LSTM
- RNN (GRU)
- RNN (LSTM)
- RNN (SimpleRNN)
- SimpleRNN
- Show All Articles ( 15 ) Collapse Articles
-
- Dense
- Embedding
- AdditiveAttention
- Attention
- MultiHeadAttention
- Conv1D
- Conv2D
- Conv3D
- ConvLSTM1D
- ConvLSTM2D
- ConvLSTM3D
- Conv1DTranspose
- Conv2DTranspose
- Conv3DTranspose
- DepthwiseConv2D
- SeparableConv1D
- SeparableConv2D
- BatchNormalization
- LayerNormalization
- PReLU 2D
- PReLU 3D
- PReLU 4D
- PReLU 5D
- Bidirectional
- GRU
- LSTM
- RNN (GRU)
- RNN (LSTM)
- RNN (SimpleRNN)
- SimpleRNN
- Show All Articles ( 15 ) Collapse Articles
-
-
-
-
- Add
- AdditiveAttention
- AlphaDropout
- Attention
- Average
- AvgPool1D
- AvgPool2D
- AvgPool3D
- BatchNormalization
- Bidirectional
- Concatenate
- Conv1D
- Conv1DTranspose
- Conv2D
- Conv2DTranspose
- Conv3D
- Conv3DTranspose
- ConvLSTM1D
- ConvLSTM2D
- ConvLSTM3D
- Cropping1D
- Cropping2D
- Cropping3D
- Dense
- DepthwiseConv2D
- Dropout
- Embedding
- Flatten
- GaussianDropout
- GaussianNoise
- GlobalAvgPool1D
- GlobalAvgPool2D
- GlobalAvgPool3D
- GlobalMaxPool1D
- GlobalMaxPool2D
- GlobalMaxPool3D
- GRU
- Input
- LayerNormalization
- LSTM
- MaxPool1D
- MaxPool2D
- MaxPool3D
- MultiHeadAttention
- Multiply
- Permute3D
- Reshape
- RNN
- SeparableConv1D
- SeparableConv2D
- SimpleRNN
- SpatialDropout
- Substract
- TimeDistributed
- UpSampling1D
- UpSampling2D
- UpSampling3D
- ZeroPadding1D
- ZeroPadding2D
- ZeroPadding3D
- Show All Articles ( 45 ) Collapse Articles
-
- AlphaDropout
- AvgPool1D
- AvgPool2D
- AvgPool3D
- BatchNormalization
- Bidirectional
- Conv1D
- Conv1DTranspose
- Conv2D
- Conv2DTranspose
- Conv3D
- Conv3DTranspose
- Cropping1D
- Cropping2D
- Cropping3D
- Dense
- DepthwiseConv2D
- Dropout
- Embedding
- Flatten
- GaussianDropout
- GaussianNoise
- GlobalAvgPool1D
- GlobalAvgPool2D
- GlobalAvgPool3D
- GlobalMaxPool1D
- GlobalMaxPool2D
- GlobalMaxPool3D
- GRU
- LayerNormalization
- LSTM
- MaxPool1D
- MaxPool2D
- MaxPool3D
- Permute3D
- Reshape
- RNN
- SeparableConv1D
- SeparableConv2D
- SimpleRNN
- SpatialDropout
- UpSampling1D
- UpSampling2D
- UpSampling3D
- ZeroPadding1D
- ZeroPadding2D
- ZeroPadding3D
- Show All Articles ( 32 ) Collapse Articles
-
-
-
- Resume
- Accuracy
- BinaryAccuracy
- BinaryCrossentropy
- BinaryIoU
- CategoricalAccuracy
- CategoricalCrossentropy
- CategoricalHinge
- CosineSimilarity
- FalseNegatives
- FalsePositives
- Hinge
- Huber
- IoU
- KLDivergence
- LogCoshError
- Mean
- MeanAbsoluteError
- MeanAbsolutePercentageError
- MeanIoU
- MeanRelativeError
- MeanSquaredError
- MeanSquaredLogarithmicError
- MeanTensor
- OneHotIoU
- OneHotMeanIoU
- Poisson
- Precision
- PrecisionAtRecall
- Recall
- RecallAtPrecision
- RootMeanSquaredError
- SensitivityAtSpecificity
- SparseCategoricalAccuracy
- SparseCategoricalCrossentropy
- SparseTopKCategoricalAccuracy
- Specificity
- SpecificityAtSensitivity
- SquaredHinge
- Sum
- TopKCategoricalAccuracy
- TrueNegatives
- TruePositives
- Show All Articles ( 28 ) Collapse Articles
-
- Resume
- Constant
- GlorotNormal
- GlorotUniform
- HeNormal
- HeUniform
- Identity
- LecunNormal
- LecunUniform
- Ones
- Orthogonal
- RandomNormal
- RandomUnifom
- TruncatedNormal
- VarianceScaling
- Zeros
- Show All Articles ( 1 ) Collapse Articles
-
MultiHeadAttention
Description
Defines the weights of the MultiHeadAttention layer selected by the name. Type : polymorphic.
Input parameters
Model in : model architecture.
name : string, name of layer.
multi_head_attention_weights : cluster
output_bias : array, 1D values. output_bias = query[2].
output_kernel : array, 3D values. output_kernel = [num_heads, value_dim, query[2]].
value_bias : array, 2D values. value_bias = [num_heads, value_dim].
value_kernel : array, 3D values. value_kernel = [value[2], num_heads, value_dim].
key_bias : array, 2D values. key_bias = [num_heads, key_dim].
key_kernel : array, 3D values. key_kernel = [key[2], num_heads, key_dim].
query_bias : array, 2D values. query_bias = [num_heads, key_dim].
query_kernel : array, 3D values. query_kernel = [query[2], num_heads, key_dim].
Output parameters
Model out : model architecture.
Dimension
- output_bias = query[2]
The size of output_bias depends on the query input size of the MultiHeadAttention layer. It will take the value at index 2 of the query size.
For example, if query has a size of [batch_size = 5, Tq = 3, dim = 2] then the size of output_bias is [dim = 2].
Another example, if query has a size of [batch_size = 10, Tq = 9, dim = 5] then the size of output_bias is [dim = 5].
- output_kernel = [num_heads, value_dim, query[2]]
The size of output_kernel depends on the query input size, the num_heads parameter and the value_dim parameter of the MultiHeadAttention layer. For the input size of query it will take the value at index 2.
For example, if query has a size of [batch_size = 5, Tq = 3, dim = 2], num_heads a value of 8 and value_dim a value of 5 then the output_kernel size is [num_heads = 8, value_dim = 5, dim = 2].
Another example, if query has a size of [batch_size = 10, Tq = 9, dim = 4], num_heads a value of 6 and value_dim a value of 5 then the output_kernel size is [num_heads = 6, value_dim = 5, dim = 4].
- value_bias = [num_heads, value_dim]
The size of value_bias depends on the num_heads parameter and the value_dim parameter of the MultiHeadAttention layer. For example, if num_heads has a value of 8 and value_dim a value of 5 then the size of value_bias is [8, 5]. Another example, if num_heads has a value of 6 and value_dim a value of 4 then the size of value_bias is [6, 4].
- value_kernel = [value[2], num_heads, value_dim]
The size of value_kernel depends on the input size of value, the num_heads parameter and the value_dim parameter of the MultiHeadAttention layer. For the input size of value, it will take the value at index 2.
For example, if value has a size of [batch_size = 5, Tv = 3, dim = 2], num_heads a value of 8 and value_dim a value of 5, then the size of value_kernel is [dim = 2, num_heads = 8, value_dim = 5].
Another example, if value has a size of [batch_size = 10, Tv = 9, dim = 4], num_heads a value of 6 and value_dim a value of 5, then the size of value_kernel is [dim = 4, num_heads = 6, value_dim = 5].
- key_bias = [num_heads, key_dim]
The size of key_bias depends on the num_heads parameter and the key_dim parameter of the MultiHeadAttention layer.
For example, if num_heads has a value of 8 and key_dim a value of 5, the size of key_bias is [num_heads = 8, key_dim = 5].
Another example, if num_heads has a value of 6 and key_dim a value of 4, the size of key_bias is [num_heads = 6, key_dim = 4].
- key_kernel = [key[2], num_heads, key_dim]
The size of key_kernel depends on the input size of key, the num_heads parameter and the key_dim parameter of the MultiHeadAttention layer. For the input size of key, it will take the value at index 2.
For example, if key has a size of [batch_size = 5, Tv = 3, dim = 2], num_heads a value of 8 and key_dim a value of 5, then the size of key_kernel is [dim = 2, num_heads = 8, key_dim = 5].
Another example, if key has a size of [batch_size = 10, Tv = 9, dim = 4], num_heads a value of 6 and key_dim a value of 5, then the size of key_kernel is [dim = 4, num_heads = 6, key_dim = 5].
- query_bias = [num_heads, key_dim]
The size of query_bias depends on the num_heads parameter and the key_dim parameter of the MultiHeadAttention layer.
For example, if num_heads has a value of 8 and key_dim a value of 5, the size of query_bias is [num_heads = 8, key_dim = 5].
Another example, if num_heads has a value of 6 and key_dim a value of 4, the size of query_bias is [num_heads = = 6, key_dim = 4].
- query_kernel = [query[2], num_heads, key_dim]
The size of query_kernel depends on the query input size, the num_heads parameter and the key_dim parameter of the MultiHeadAttention layer. For the query input size, it will take the value at index 2.
For example, if query has a size of [batch_size = 5, Tq = 3, dim = 2], num_heads a value of 8 and key_dim a value of 5, then the size of query_kernel is [dim = 2, num_heads = 8, key_dim = 5].
Another example, if query has a size of [batch_size = 10, Tq = 9, dim = 4], num_heads a value of 6 and key_dim a value of 5, then the size of query_kernel is [dim = 4, num_heads = 6, key_dim = 5].
Example
All these exemples are snippets PNG, you can drop these Snippet onto the block diagram and get the depicted code added to your VI (Do not forget to install HAIBAL library to run it).