Welcome to our Support Center

Snpe

Description

Onnx node for SNPE.

 

Input parameters

 

specified_outputs_namearray, this parameter lets you manually assign custom names to the output tensors of a node.
inputs (variadic)  – T : array, list of tensors for SNPE DLC input.

 Parameters : cluster,

DLC : string, payload of the SNPE DLC file.
notes : string, some notes for the model.
snpe_version : string, SNPE version used to convert the model.
target_device : string, target device like CPU, DSP, etc.
 training? : boolean, whether the layer is in training mode (can store data for backward).
Default value “True”.
 lda coeff : float, defines the coefficient by which the loss derivative will be multiplied before being sent to the previous layer (since during the backward run we go backwards).
Default value “1”.

 name (optional) : string, name of the node.

Output parameters

 

outputs (variadic) – T : object, one or more outputs, list of tensors for DLC output.

Type Constraints

T in (tensor(uint8)tensor(uint16)tensor(float)) : Constrain input and output types to uint8, uint16, float tensors.

Example

All these exemples are snippets PNG, you can drop these Snippet onto the block diagram and get the depicted code added to your VI (Do not forget to install Deep Learning library to run it).
Table of Contents