Welcome to our Support Center

Size

Description

Takes a tensor as input and outputs a int64 scalar that equals to the total number of elements of the input tensor.

 

Input parameters

 

specified_outputs_namearray, this parameter lets you manually assign custom names to the output tensors of a node.
data (heterogeneous) – T : object, input tensor.

 Parameters : cluster,

 training? : boolean, whether the layer is in training mode (can store data for backward).
Default value “True”.
 lda coeff : float, defines the coefficient by which the loss derivative will be multiplied before being sent to the previous layer (since during the backward run we go backwards).
Default value “1”.

 name (optional) : string, name of the node.

Output parameters

 

size (heterogeneous) – T1 : object, total number of elements of the input tensor.

Type Constraints

T in (tensor(bfloat16)tensor(bool)tensor(complex128)tensor(complex64)tensor(double)tensor(float)tensor(float16)tensor(float8e4m3fn)tensor(float8e4m3fnuz)tensor(float8e5m2)tensor(float8e5m2fnuz)tensor(int16)tensor(int32)tensor(int64)tensor(int8)tensor(string)tensor(uint16)tensor(uint32)tensor(uint64)tensor(uint8)) : Input tensor can be of arbitrary type.

T1 in (tensor(int64)) : Constrain output to int64 tensor, which should be a scalar though.

Example

All these exemples are snippets PNG, you can drop these Snippet onto the block diagram and get the depicted code added to your VI (Do not forget to install Deep Learning library to run it).
Table of Contents