Welcome to our Support Center

SequenceEmpty

Description

Construct an empty tensor sequence, with given data type.

 

Input parameters

 

 specified_outputs_name : array, this parameter lets you manually assign custom names to the output tensors of a node.

 Parameters : cluster,

dtype : enum, the data type of the tensors in the output sequence.
Default value “FLOAT”.
 training? : boolean, whether the layer is in training mode (can store data for backward).
Default value “True”.
 lda coeff : float, defines the coefficient by which the loss derivative will be multiplied before being sent to the previous layer (since during the backward run we go backwards).
Default value “1”.

 name (optional) : string, name of the node.

Output parameters

 

output (heterogeneous) – S : object, empty sequence.

Type Constraints

S in (seq(tensor(bool))seq(tensor(complex128))seq(tensor(complex64))seq(tensor(double))seq(tensor(float))
seq(tensor(float16))seq(tensor(int16))seq(tensor(int32))seq(tensor(int64))seq(tensor(int8))seq(tensor(string))seq(tensor(uint16))seq(tensor(uint32))seq(tensor(uint64))seq(tensor(uint8))) : Constrain output types to any tensor type.

Example

All these exemples are snippets PNG, you can drop these Snippet onto the block diagram and get the depicted code added to your VI (Do not forget to install Deep Learning library to run it).
Table of Contents