Welcome to our Support Center

SequenceConstruct

Description

Construct a tensor sequence containing ‘inputs’ tensors. All tensors in ‘inputs’ must have the same data type.

 

Input parameters

 

specified_outputs_namearray, this parameter lets you manually assign custom names to the output tensors of a node.
inputs (variadic, heterogeneous) – T : object, tensors.

 Parameters : cluster,

 training? : boolean, whether the layer is in training mode (can store data for backward).
Default value “True”.
 lda coeff : float, defines the coefficient by which the loss derivative will be multiplied before being sent to the previous layer (since during the backward run we go backwards).
Default value “1”.

 name (optional) : string, name of the node.

Output parameters

 

output_sequence (heterogeneous) – S : object, sequence enclosing the input tensors.

Type Constraints

T in (tensor(bool)tensor(complex128)tensor(complex64)tensor(double)tensor(float)tensor(float16)tensor(int16)
tensor(int32)tensor(int64)tensor(int8)tensor(string)tensor(uint16)tensor(uint32)tensor(uint64)tensor(uint8)) : Constrain input types to any tensor type.

S in (seq(tensor(bool))seq(tensor(complex128))seq(tensor(complex64))seq(tensor(double))seq(tensor(float))
seq(tensor(float16))seq(tensor(int16))seq(tensor(int32))seq(tensor(int64))seq(tensor(int8))seq(tensor(string))seq(tensor(uint16))seq(tensor(uint32))seq(tensor(uint64))seq(tensor(uint8))) : Constrain output types to any tensor type.

Example

All these exemples are snippets PNG, you can drop these Snippet onto the block diagram and get the depicted code added to your VI (Do not forget to install Deep Learning library to run it).
Table of Contents