-
Quick start
-
API
-
-
- Resume
- Add
- AdditiveAttention
- AlphaDropout
- Attention
- Average
- AvgPool1D
- AvgPool2D
- AvgPool3D
- BatchNormalization
- Bidirectional
- Concatenate
- Conv1D
- Conv1DTranspose
- Conv2D
- Conv2DTranspose
- Conv3D
- Conv3DTranspose
- ConvLSTM1D
- ConvLSTM2D
- ConvLSTM3D
- Cropping1D
- Cropping2D
- Cropping3D
- Dense
- DepthwiseConv2D
- Dropout
- ELU
- Embedding
- Exponential
- Flatten
- GaussianDropout
- GaussianNoise
- GELU
- GlobalAvgPool1D
- GlobalAvgPool2D
- GlobalAvgPool3D
- GlobalMaxPool1D
- GlobalMaxPool2D
- GlobalMaxPool3D
- GRU
- HardSigmoid
- Input
- LayerNormalization
- LeakyReLU
- Linear
- LSTM
- MaxPool1D
- MaxPool2D
- MaxPool3D
- MultiHeadAttention
- Multiply
- Output Predict
- Output Train
- Permute3D
- PReLU
- ReLU
- Reshape
- RNN
- SELU
- SeparableConv1D
- SeparableConv2D
- Sigmoid
- SimpleRNN
- SoftMax
- SoftPlus
- SoftSign
- SpatialDropout
- Split
- Substract
- Swish
- TanH
- ThresholdedReLU
- UpSampling1D
- UpSampling2D
- UpSampling3D
- ZeroPadding1D
- ZeroPadding2D
- ZeroPadding3D
- Show All Articles ( 64 ) Collapse Articles
-
-
- Abs
- Acos
- Acosh
- Add
- AffineGrid
- And
- ArgMax
- ArgMin
- Asin
- Asinh
- Atan
- Atanh
- Attention
- AttnLSTM
- AveragePool
- BatchNormalization
- Bernouilli
- BiasAdd
- BiasDropout
- BiasGelu
- BiasSoftmax
- BiasSplitGelu
- BifurcationDetector
- BitmaskBiasDropout
- BitmaskDropout
- BitShift
- BitwiseAnd
- BitwiseNot
- BitwiseOr
- BitwiseXor
- BlackmanWindow
- Cast
- CastLike
- CDist
- Ceil
- Celu
- CenterCropPad
- Clip
- Col2lm
- ComplexMul
- ComplexMulConj
- Compress
- Concat
- ConcatFromSequence
- Conv
- ConvInteger
- ConvTranspose
- ConvTransposeWithDynamicPads
- Cos
- Cosh
- CropAndResize
- CumSum
- DecoderAttention
- DecoderMaskedMultiHeadAttention
- DecoderMaskedSelfAttention
- DeformConv
- DepthToSpace
- DequantizeBFP
- DequantizeLinear
- DequantizeWithOrder
- Det
- DFT
- Div
- Dropout
- DynamicQuantizeLinear
- DynamicQuantizeLSTM
- DynamicQuantizeMatMul
- DynamicTimeWarping
- Einsum
- EmbedLayerNormalization
- EPContext
- Equal
- Erf
- Exp
- Expand
- ExpandDims
- EyeLike
- FastGelu
- Flatten
- Floor
- FusedConv
- FusedGemm
- FusedMatMul
- FusedMatMulActivation
- GatedRelativePositionBias
- Gather
- GatherElements
- GatherND
- Gemm
- GemmaRotaryEmbedding
- GemmFastGelu
- GemmFloat8
- GlobalAveragePool
- GlobalLpPool
- GlobalMaxPool
- Greater
- GreaterOrEqual
- GreedySearch
- GridSample
- GroupNorm
- GroupQueryAttention
- GRU
- HammingWindow
- HannWindow
- HardMax
- HardSwish
- Identity
- If
- ImageDecoder
- InstanceNormalization
- Inverse
- lrfft
- lslnf
- lsNaN
- LayerNormalization
- Less
- LessOrEqual
- Log
- LogSoftmax
- LongformerAttention
- Loop
- LpNormalization
- LpPool
- LRN
- LSTM
- MatMul
- MatMulBnb4
- MatMulFpQ4
- MatMulInteger
- MatMulInteger16
- MatMulIntergerToFloat
- MatMulNBits
- Max
- MaxPool
- MaxPoolWithMask
- MaxRoiPool
- MaxUnPool
- Mean
- MeanVarianceNormalization
- MelWeightMatrix
- MicrosoftDequantizeLinear
- MicrosoftGatherND
- MicrosoftGelu
- MicrosoftGridSample
- MicrosoftMultiHeadAttention
- MicrosoftPad
- MicrosoftQLinearConv
- MicrosoftQuantizeLinear
- MicrosoftRange
- MicrosoftTrilu
- MicrosoftUnique
- Min
- Mish
- Mod
- MoE
- Mul
- MulInteger
- Multinomial
- MurmurHash3
- Neg
- NegativeLogLikelihoodLoss
- NGramRepeatBlock
- NhwcConv
- NhwcFusedConv
- NhwcMaxPool
- NonMaxSuppression
- NonZero
- Not
- OneHot
- OptionalGetElement
- OptionalHasElement
- Or
- PackedAttention
- PackedMultiHeadAttention
- Pad
- Pow
- PRelu
- QAttention
- QGemm
- QLinearAdd
- QLinearAveragePool
- QLinearConcat
- QLinearConv
- QLinearGlobalAveragePool
- QLinearLeakyRelu
- QLinearMatMul
- QLinearMul
- QLinearReduceMean
- QLinearSigmoid
- QLinearSoftmax
- QLinearWhere
- QMoE
- QOrderedAttention
- QOrderedGelu
- QOrderedLayerNormalization
- QOrderedLongformerAttention
- QOrderedMatMul
- QuantizeBFP
- QuantizeLinear
- QuantizeWithOrder
- QuickGelu
- RandomNormal
- RandomNormalLike
- RandomUniform
- RandomUniformLike
- Range
- Reciprocal
- ReduceL1
- ReduceL2
- ReduceLogSum
- ReduceLogSumExp
- ReduceMax
- ReduceMean
- ReduceMin
- ReduceProd
- ReduceSum
- ReduceSumInteger
- ReduceSumSquare
- RegexFullMatch
- RelativePositionBias
- RemovePadding
- Reshape
- Resize
- RestorePadding
- ReverseSequence
- Rfft
- RNN
- RoiAlign
- RotaryEmbedding
- Round
- SampleOp
- Sampling
- Scan
- ScatterElements
- ScatterND
- SequenceAt
- SequenceConstruct
- SequenceEmpty
- SequenceErase
- SequenceInsert
- SequenceLength
- SequenceMap
- Shape
- Shrink
- Sign
- Sin
- Sinh
- Size
- SkipGroupNorm
- Show All Articles ( 234 ) Collapse Articles
-
-
-
-
-
- Resume
- Constant
- GlorotNormal
- GlorotUniform
- HeNormal
- HeUniform
- Identity
- LecunNormal
- LecunUniform
- Ones
- Orthogonal
- RandomNormal
- RandomUnifom
- TruncatedNormal
- VarianceScaling
- Zeros
- Show All Articles ( 1 ) Collapse Articles
-
- Resume
- BinaryCrossentropy
- CategoricalCrossentropy
- CategoricalHinge
- CosineSimilarity
- Hinge
- Huber
- KLDivergence
- LogCosh
- MeanAbsoluteError
- MeanAbsolutePercentageError
- MeanSquaredError
- MeanSquaredLogarithmicError
- Poisson
- SquaredHinge
- Custom
- Show All Articles ( 1 ) Collapse Articles
-
-
-
-
-
- Dense
- PReLU 2D
- PReLU 3D
- PReLU 4D
- PReLU 5D
- AdditiveAttention
- Attention
- MutiHeadAttention
- Conv1D
- Conv2D
- Conv3D
- ConvLSTM1D
- ConvLSTM2D
- ConvLSTM3D
- Conv1DTranspose
- Conv2DTranspose
- Conv3DTranspose
- DepthwiseConv2D
- SeparableConv1D
- SeparableConv2D
- Embedding
- BatchNormalization
- LayerNormalization
- Bidirectional
- GRU
- LSTM
- SimpleRNN
- Show All Articles ( 12 ) Collapse Articles
-
- Dense
- PReLU 2D
- PReLU 3D
- PReLU 4D
- PReLU 5D
- AdditiveAttention
- Attention
- MultiHeadAttention
- Conv1D
- Conv2D
- Conv3D
- ConvLSTM1D
- ConvLSTM2D
- ConvLSTM3D
- Conv1DTranspose
- Conv2DTranspose
- Conv3DTranspose
- DepthwiseConv2D
- SeparableConv1D
- SeparableConv2D
- Embedding
- BatchNormalization
- LayerNormalization
- Bidirectional
- GRU
- LSTM
- SimpleRNN
- Show All Articles ( 12 ) Collapse Articles
-
-
- Resume
- Dense
- AdditiveAttention
- Attention
- MultiHeadAttention
- BatchNormalization
- LayerNormalization
- Bidirectional
- GRU
- LSTM
- SimpleRNN
- Conv1D
- Conv2D
- Conv3D
- Conv1DTranspose
- Conv2DTranspose
- Conv3DTranspose
- ConvLSTM1D
- ConvLSTM2D
- ConvLSTM3D
- DepthwiseConv2D
- SeparableConv1D
- SeparableConv2D
- Embedding
- PReLU 2D
- PReLU 3D
- PReLU 4D
- PReLU 5D
- Show All Articles ( 13 ) Collapse Articles
-
-
- Dense
- Embedding
- AdditiveAttention
- Attention
- MultiHeadAttention
- Conv1D
- Conv2D
- Conv3D
- ConvLSTM1D
- ConvLSTM2D
- ConvLSTM3D
- Conv1DTranspose
- Conv2DTranspose
- Conv3DTranspose
- DepthwiseConv2D
- SeparableConv1D
- SeparableConv2D
- BatchNormalization
- LayerNormalization
- PReLU 2D
- PReLU 3D
- PReLU 4D
- PReLU 5D
- Bidirectional
- GRU
- LSTM
- RNN (GRU)
- RNN (LSTM)
- RNN (SimpleRNN)
- SimpleRNN
- Show All Articles ( 15 ) Collapse Articles
-
- Dense
- Embedding
- AdditiveAttention
- Attention
- MultiHeadAttention
- Conv1D
- Conv2D
- Conv3D
- ConvLSTM1D
- ConvLSTM2D
- ConvLSTM3D
- Conv1DTranspose
- Conv2DTranspose
- Conv3DTranspose
- DepthwiseConv2D
- SeparableConv1D
- SeparableConv2D
- BatchNormalization
- LayerNormalization
- PReLU 2D
- PReLU 3D
- PReLU 4D
- PReLU 5D
- Bidirectional
- GRU
- LSTM
- RNN (GRU)
- RNN (LSTM)
- RNN (SimpleRNN)
- SimpleRNN
- Show All Articles ( 15 ) Collapse Articles
-
-
-
- Dense
- Embedding
- AdditiveAttention
- Attention
- MultiHeadAttention
- Conv1D
- Conv2D
- Conv3D
- ConvLSTM1D
- ConvLSTM2D
- ConvLSTM3D
- Conv1DTranspose
- Conv2DTranspose
- Conv3DTranspose
- DepthwiseConv2D
- SeparableConv1D
- SeparableConv2D
- BatchNormalization
- LayerNormalization
- PReLU 2D
- PReLU 3D
- PReLU 4D
- PReLU 5D
- Bidirectional
- GRU
- LSTM
- RNN (GRU)
- RNN (LSTM)
- RNN (SimpleRNN)
- SimpleRNN
- Show All Articles ( 15 ) Collapse Articles
-
- Dense
- Embedding
- AdditiveAttention
- Attention
- MultiHeadAttention
- Conv1D
- Conv2D
- Conv3D
- ConvLSTM1D
- ConvLSTM2D
- ConvLSTM3D
- Conv1DTranspose
- Conv2DTranspose
- Conv3DTranspose
- DepthwiseConv2D
- SeparableConv1D
- SeparableConv2D
- BatchNormalization
- LayerNormalization
- PReLU 2D
- PReLU 3D
- PReLU 4D
- PReLU 5D
- Bidirectional
- GRU
- LSTM
- RNN (GRU)
- RNN (LSTM)
- RNN (SimpleRNN)
- SimpleRNN
- Show All Articles ( 15 ) Collapse Articles
-
-
- Resume
- Accuracy
- BinaryAccuracy
- BinaryCrossentropy
- BinaryIoU
- CategoricalAccuracy
- CategoricalCrossentropy
- CategoricalHinge
- CosineSimilarity
- FalseNegatives
- FalsePositives
- Hinge
- Huber
- IoU
- KLDivergence
- LogCoshError
- Mean
- MeanAbsoluteError
- MeanAbsolutePercentageError
- MeanIoU
- MeanRelativeError
- MeanSquaredError
- MeanSquaredLogarithmicError
- MeanTensor
- OneHotIoU
- OneHotMeanIoU
- Poisson
- Precision
- PrecisionAtRecall
- Recall
- RecallAtPrecision
- RootMeanSquaredError
- SensitivityAtSpecificity
- SparseCategoricalAccuracy
- SparseCategoricalCrossentropy
- SparseTopKCategoricalAccuracy
- Specificity
- SpecificityAtSensitivity
- SquaredHinge
- Sum
- TopKCategoricalAccuracy
- TrueNegatives
- TruePositives
- Show All Articles ( 28 ) Collapse Articles
-
-
ScatterND
Description
ScatterND takes three inputs data
tensor of rank r >= 1, indices
tensor of rank q >= 1, and updates
tensor of rank q + r – indices.shape[-1] – 1. The output of the operation is produced by creating a copy of the input data
, and then updating its value to values specified by updates
at specific index positions specified by indices
. Its output shape is the same as the shape of data
.
indices
is an integer tensor. Let k denote indices.shape[-1], the last dimension in the shape of indices
. indices
is treated as a (q-1)-dimensional tensor of k-tuples, where each k-tuple is a partial-index into data
. Hence, k can be a value at most the rank of data
. When k equals rank(data), each update entry specifies an update to a single element of the tensor. When k is less than rank(data) each update entry specifies an update to a slice of the tensor. Index values are allowed to be negative, as per the usual convention for counting backwards from the end, but are expected in the valid range.
updates
is treated as a (q-1)-dimensional tensor of replacement-slice-values. Thus, the first (q-1) dimensions of updates.shape must match the first (q-1) dimensions of indices.shape. The remaining dimensions of updates
correspond to the dimensions of the replacement-slice-values. Each replacement-slice-value is a (r-k) dimensional tensor, corresponding to the trailing (r-k) dimensions of data
. Thus, the shape of updates
must equal indices.shape[0:q-1] ++ data.shape[k:r-1], where ++ denotes the concatenation of shapes.
The output
is calculated via the following equation:
output = np.copy(data)
update_indices = indices.shape[:-1]
for idx in np.ndindex(update_indices):
output[indices[idx]] = updates[idx]
The order of iteration in the above loop is not specified. In particular, indices should not have duplicate entries: that is, if idx1 != idx2, then indices[idx1] != indices[idx2]. This ensures that the output value does not depend on the iteration order.
reduction
allows specification of an optional reduction operation, which is applied to all values in updates
tensor into output
at the specified indices
. In cases where reduction
is set to “none”, indices should not have duplicate entries: that is, if idx1 != idx2, then indices[idx1] != indices[idx2]. This ensures that the output value does not depend on the iteration order. When reduction
is set to some reduction function f
, output
is calculated as follows:
output = np.copy(data)
update_indices = indices.shape[:-1]
for idx in np.ndindex(update_indices):
output[indices[idx]] = f(output[indices[idx]], updates[idx])
where the f
is +
, *
, max
or min
as specified.
This operator is the inverse of GatherND.
Input parameters
specified_outputs_name : array, this parameter lets you manually assign custom names to the output tensors of a node.
Graphs in : cluster, ONNX model architecture.
data (heterogeneous) – T : object, tensor of rank r >= 1.
indices (heterogeneous) – tensor(int64) : object, tensor of rank q >= 1.
updates (heterogeneous) – T : object, tensor of rank q + r – indices_shape[-1] – 1.

Parameters : cluster,
reduction : enum, type of reduction to apply: none (default), add, mul, max, min. ‘none’: no reduction applied. ‘add’: reduction using the addition operation. ‘mul’: reduction using the addition operation. ‘max’: reduction using the maximum operation.‘min’: reduction using the minimum operation.
Default value “none”. training? : boolean, whether the layer is in training mode (can store data for backward).
Default value “True”. lda coeff : float, defines the coefficient by which the loss derivative will be multiplied before being sent to the previous layer (since during the backward run we go backwards).
Default value “1”.
name (optional) : string, name of the node.

Output parameters
output (heterogeneous) – T : object, tensor of rank r >= 1.
Type Constraints
T in (tensor(bfloat16)
, tensor(bool)
, tensor(complex128)
, tensor(complex64)
, tensor(double)
, tensor(float)
, tensor(float16)
, tensor(int16)
, tensor(int32)
, tensor(int64)
, tensor(int8)
, tensor(string)
, tensor(uint16)
, tensor(uint32)
, tensor(uint64)
, tensor(uint8)
) : Constrain input and output types to any tensor type.