Welcome to our Support Center

QuantizeWithOrder

Description

Quantize input matrix to specific layout used in cublaslt.

 

Input parameters

 

specified_outputs_namearray, this parameter lets you manually assign custom names to the output tensors of a node.

 Graphs in : cluster, ONNX model architecture.

input (heterogeneous) – F : object, input tensor of (ROWS, COLS). if less than 2d, will broadcast to (1, X). If 3d, it is treated as (B, ROWS, COS).
scale_input (heterogeneous) – S : object, scale of the input.

 Parameters : cluster,

 order_input : enum, cublasLt order of input matrix. ORDER_COL = 0, ORDER_ROW = 1, ORDER_COL32 = 2, ORDER_COL4_4R2_8C = 3, ORDER_COL32_2R_4R4 = 4. Please refer https://docs.nvidia.com/cuda/cublas/index.html#cublasLtOrder_t for their meaning.
Default value “ORDER_COL”.
 order_output : enum, cublasLt order of output matrix.
Default value “ORDER_COL”.
 training? : boolean, whether the layer is in training mode (can store data for backward).
Default value “True”.
 lda coeff : float, defines the coefficient by which the loss derivative will be multiplied before being sent to the previous layer (since during the backward run we go backwards).
Default value “1”.

 name (optional) : string, name of the node.

Output parameters

 

 output (heterogeneous) – Q : object, output tensor.

Type Constraints

Q in (tensor(int8)) : Constrain input and output types to int8 tensors.

F in (tensor(float), tensor(float16)) : Constrain to float types.

S in (tensor(float)) : Constrain Scale to float32 types.

Example

All these exemples are snippets PNG, you can drop these Snippet onto the block diagram and get the depicted code added to your VI (Do not forget to install Deep Learning library to run it).
Table of Contents