Welcome to our Support Center

NhwcMaxPool

Description

NhwcMaxPool is a version of MaxPool optimized for tensors where the channels are in the last dimension (NHWC) instead of the second (NCHW).

 

Input parameters

 

specified_outputs_namearray, this parameter lets you manually assign custom names to the output tensors of a node.
x (heterogeneous)  – T : object,

 Parameters : cluster,

 auto_pad : enum, auto_pad must be either NOTSET, SAME_UPPER, SAME_LOWER or VALID. Where default value is NOTSET, which means explicit padding is used. SAME_UPPER or SAME_LOWER mean pad the input so that output_shape[i] = ceil(input_shape[i] / strides[i]) for each axis i. The padding is split between the two sides equally or almost equally (depending on whether it is even or odd). In case the padding is an odd number, the extra padding is added at the end for SAME_UPPER and at the beginning for SAME_LOWER.
Default value “NOTSET”.
 ceil_mode : boolean, whether to use ceil or floor (default) to compute the output shape.
Default value “False”.
 dilations : array, dilation value along each spatial axis of filter. If not present, the dilation defaults to 1 along each spatial axis.
Default value “empty”.
 kernel_shape : array, the size of the kernel along each axis.
Default value “empty”.
 pads array, padding for the beginning and ending along each spatial axis, it can take any value greater than or equal to 0. The value represent the number of pixels added to the beginning and end part of the corresponding axis. pads format should be as follow [x1_begin, x2_begin…x1_end, x2_end,…], where xi_begin the number of pixels added at the beginning of axis i and xi_end, the number of pixels added at the end of axis i. This attribute cannot be used simultaneously with auto_pad attribute. If not present, the padding defaults to 0 along start and end of each spatial axis.
Default value “empty”.
 strides : array, stride along each spatial axis. If not present, the stride defaults to 1 along each spatial axis.
Default value “empty”.
 training? : boolean, whether the layer is in training mode (can store data for backward).
Default value “True”.
 lda coeff : float, defines the coefficient by which the loss derivative will be multiplied before being sent to the previous layer (since during the backward run we go backwards).
Default value “1”.

 name (optional) : string, name of the node.

Output parameters

 

 y (heterogeneous) – T : object,

Type Constraints

T in (tensor(int8)tensor(uint8)) : Constrain input and output types to numeric tensors.

Example

All these exemples are snippets PNG, you can drop these Snippet onto the block diagram and get the depicted code added to your VI (Do not forget to install Deep Learning library to run it).
Table of Contents