Welcome to our Support Center

Min

Description

Element-wise min of each of the input tensors (with Numpy-style broadcasting support). All inputs and outputs must have the same data type. This operator supports multidirectional (i.e., Numpy-style) broadcasting; for more details please check Broadcasting in ONNX.

 

Input parameters

 

specified_outputs_namearray, this parameter lets you manually assign custom names to the output tensors of a node.
data_0 (variadic, heterogeneous)  – T : array, list of tensors for min.

 Parameters : cluster,

 training? : boolean, whether the layer is in training mode (can store data for backward).
Default value “True”.
 lda coeff : float, defines the coefficient by which the loss derivative will be multiplied before being sent to the previous layer (since during the backward run we go backwards).
Default value “1”.

 name (optional) : string, name of the node.

Output parameters

 

 min (heterogeneous) – T : object, output tensor.

Type Constraints

T in (tensor(bfloat16)tensor(double)tensor(float)tensor(float16)tensor(int16)tensor(int32)tensor(int64)
tensor(int8)tensor(uint16)tensor(uint32)tensor(uint64)tensor(uint8)) : Constrain input and output types to numeric tensors.

Example

All these exemples are snippets PNG, you can drop these Snippet onto the block diagram and get the depicted code added to your VI (Do not forget to install Deep Learning library to run it).
Table of Contents