Welcome to our Support Center

Inverse

Description

Inverse is used to invert a matrix. In other words, it takes a square matrix (same number of rows and columns) and calculates its inverse matrix.

 

Input parameters

 

specified_outputs_namearray, this parameter lets you manually assign custom names to the output tensors of a node.
X (heterogeneous) – T : object, input tensor. Every matrix in the batch must be invertible.

 Parameters : cluster,

 training? : boolean, whether the layer is in training mode (can store data for backward).
Default value “True”.
 lda coeff : float, defines the coefficient by which the loss derivative will be multiplied before being sent to the previous layer (since during the backward run we go backwards).
Default value “1”.

 name (optional) : string, name of the node.

Output parameters

 

 Y (heterogeneous) – T : object, output tensor of the same type and shape as the input tensor.

Type Constraints

T in (tensor(double)tensor(float)tensor(float16)) : Constrain input and output types to float tensors.

Example

All these exemples are snippets PNG, you can drop these Snippet onto the block diagram and get the depicted code added to your VI (Do not forget to install Deep Learning library to run it).
Table of Contents