Welcome to our Support Center

GlobalMaxPool

Description

GlobalMaxPool consumes an input tensor X and applies max pooling across the values in the same channel. This is equivalent to MaxPool with kernel size equal to the spatial dimension of input tensor.

 

Input parameters

 

specified_outputs_namearray, this parameter lets you manually assign custom names to the output tensors of a node.
X (heterogeneous) – T : object, input data tensor from the previous operator; dimensions for image case are (N x C x H x W), where N is the batch size, C is the number of channels, and H and W are the height and the width of the data. For non image case, the dimensions are in the form of (N x C x D1 x D2 … Dn), where N is the batch size.

 Parameters : cluster,

 training? : boolean, whether the layer is in training mode (can store data for backward).
Default value “True”.
 lda coeff : float, defines the coefficient by which the loss derivative will be multiplied before being sent to the previous layer (since during the backward run we go backwards).
Default value “1”.

 name (optional) : string, name of the node.

Output parameters

 

 Y (heterogeneous) – T : object, output data tensor from pooling across the input tensor. The output tensor has the same rank as the input. The first two dimensions of output shape are the same as the input (N x C), while the other dimensions are all 1.

Type Constraints

T in (tensor(double)tensor(float)tensor(float16)) : Constrain input and output types to float tensors.

Example

All these exemples are snippets PNG, you can drop these Snippet onto the block diagram and get the depicted code added to your VI (Do not forget to install Deep Learning library to run it).
Table of Contents