Welcome to our Support Center

FusedMatMulActivation

Description

Executes the same operation as FusedMatMul, but also has an activation function fused to its output.

 

Input parameters

 

specified_outputs_namearray, this parameter lets you manually assign custom names to the output tensors of a node.

 Graphs in : cluster, ONNX model architecture.

 A (heterogeneous) – T : object, N-dimensional matrix A.
 B (heterogeneous) – T : object, N-dimensional matrix B.

 Parameters : cluster,

 activation : enum, activation function.
Default value “Relu”.
 activation_alpha float,
Default value “0”.
 activation_axis float,
Default value “0”.
 activation_beta float,
Default value “0”.
 activation_gamma float,
Default value “0”.
 alpha float, scalar multiplier for the product of the input tensors.
Default value “0”.
 beta float,
Default value “0”.
 transA : boolean, whether A should be transposed on the last two dimensions before doing multiplication.
Default value “False”.
 transB : boolean, whether B should be transposed on the last two dimensions before doing multiplication.
Default value “False”.
 transBatchA : boolean, whether A should be transposed on the 1st dimension and batch dimensions (dim-1 to dim-rank-2) before doing multiplication.
Default value “False”.
 transBatchB : boolean, whether B should be transposed on the 1st dimension and batch dimensions (dim-1 to dim-rank-2) before doing multiplication.
Default value “False”.
 training? : boolean, whether the layer is in training mode (can store data for backward).
Default value “True”.
 lda coeff : float, defines the coefficient by which the loss derivative will be multiplied before being sent to the previous layer (since during the backward run we go backwards).
Default value “1”.

 name (optional) : string, name of the node.

Output parameters

 

 Y (heterogeneous) – T : object, matrix multiply results.

Type Constraints

T in (tensor(float)tensor(float16), tensor(bfloat16), tensor(double)) : Constrain input and output types to float tensors.

Example

All these exemples are snippets PNG, you can drop these Snippet onto the block diagram and get the depicted code added to your VI (Do not forget to install Deep Learning library to run it).
Table of Contents