Welcome to our Support Center

FusedGemm

Description

The FusedGemm operator schema is the same as Gemm besides it includes attributes activation and leaky_relu_alpha.

 

Input parameters

 

specified_outputs_namearray, this parameter lets you manually assign custom names to the output tensors of a node.

 Graphs in : cluster, ONNX model architecture.

 A (heterogeneous) – T : object, input tensor A. The shape of A should be (M, K) if transA is 0, or (K, M) if transA is non-zero.
 B (heterogeneous) – T : object, input tensor B. The shape of B should be (K, N) if transB is 0, or (N, K) if transB is non-zero.
 C (optional, heterogeneous) – T : object, input tensor C. The shape of C should be unidirectional broadcastable to (M, N).

 Parameters : cluster,

activation : enum, activation function.
Default value “Relu”.
activation_alpha : float,
Default value “0”.
activation_beta : float,
Default value “0”.
activation_gamma : float,
Default value “0”.
alpha : float, scalar multiplier for the product of input tensors A * B.
Default value “1”.
beta : float, scalar multiplier for input tensor C.
Default value “1”.
 transA : boolean, whether A should be transposed.
Default value “False”.
transB : boolean, whether B should be transposed.
Default value “False”.
 training? : boolean, whether the layer is in training mode (can store data for backward).
Default value “True”.
 lda coeff : float, defines the coefficient by which the loss derivative will be multiplied before being sent to the previous layer (since during the backward run we go backwards).
Default value “1”.

 name (optional) : string, name of the node.

Output parameters

 

 Y (heterogeneous) – T : object, output tensor of shape (M, N).

Type Constraints

T in (tensor(float)tensor(float16), tensor(double), tensor(uint32)tensor(uint64), tensor(int32), tensor(int64)) : Constrain input and output types to float/int tensors.

Example

All these exemples are snippets PNG, you can drop these Snippet onto the block diagram and get the depicted code added to your VI (Do not forget to install Deep Learning library to run it).
Table of Contents