Welcome to our Support Center

Erf

Description

Computes the error function of the given input tensor element-wise.

 

Input parameters

 

specified_outputs_name :Β array, this parameter lets you manually assign custom names to the output tensors of a node.
input (heterogeneous) – T : object, input tensor.

Β Parameters :Β cluster,

Β training?Β :Β boolean, whether the layer is in training mode (can store data for backward).
Default value β€œTrue”.
Β lda coeff :Β float, defines the coefficient by which the loss derivative will be multiplied before being sent to the previous layer (since during the backward run we go backwards).
Default value β€œ1”.

Β name (optional) :Β string, name of the node.

Output parameters

 

Β output (heterogeneous) – T : object, the error function of the input tensor computed element-wise. It has the same shape and type of the input.

Type Constraints

T in (tensor(bfloat16),Β tensor(double),Β tensor(float),Β tensor(float16),Β tensor(int16),Β tensor(int32),Β tensor(int64),Β 
tensor(int8),Β tensor(uint16),Β tensor(uint32),Β tensor(uint64),Β tensor(uint8)) : Constrain input and output types to all numeric tensors.

Example

All these exemples are snippets PNG, you can drop these Snippet onto the block diagram and get the depicted code added to your VI (Do not forget to install Deep Learning library to run it).
Table of Contents