Welcome to our Support Center

Concat

Description

Concatenate a list of tensors into a single tensor. All input tensors must have the same shape, except for the dimension size of the axis to concatenate on.

 

Input parameters

 

specified_outputs_namearray, this parameter lets you manually assign custom names to the output tensors of a node.
inputs (heterogeneous) – T : array, list of tensors for concatenation.

 Parameters : cluster,

axis : integer, which axis to concat on. A negative value means counting dimensions from the back. Accepted range is [-r, r-1] where r = rank(inputs)…
Default value “0”.
 training? : boolean, whether the layer is in training mode (can store data for backward).
Default value “True”.
 lda coeff : float, defines the coefficient by which the loss derivative will be multiplied before being sent to the previous layer (since during the backward run we go backwards).
Default value “1”.

 name (optional) : string, name of the node.

Output parameters

 

concat_result (heterogeneous) – T : object, concatenated tensor.

Type Constraints

T in (tensor(bfloat16)tensor(bool)tensor(complex128)tensor(complex64)tensor(double)tensor(float)tensor(float16)
tensor(int16)tensor(int32)tensor(int64)tensor(int8)tensor(string)tensor(uint16)tensor(uint32)tensor(uint64)tensor(uint8)) : Constrain output types to any tensor type.

Example

All these exemples are snippets PNG, you can drop these Snippet onto the block diagram and get the depicted code added to your VI (Do not forget to install Deep Learning library to run it).
Table of Contents