Welcome to our Support Center

Abs

Description

Absolute takes one input data (Tensor) and produces one output data (Tensor) where absolute value, y = abs(x), is applied to the tensor elementwise.

 

Input parameters

 

specified_outputs_namearray, this parameter lets you manually assign custom names to the output tensors of a node.
X (heterogeneous) – T : ONNX model architecture.

 Parameters : cluster,

 training? : boolean, whether the layer is in training mode (can store data for backward).
Default value “True”.
 lda coeff : float, defines the coefficient by which the loss derivative will be multiplied before being sent to the previous layer (since during the backward run we go backwards).
Default value “1”.

 name (optional) : string, name of the node.

Output parameters

 

 Y (heterogeneous) – T : ONNX model architecture.

Type Constraints

T in (tensor(bfloat16)tensor(double)tensor(float)tensor(float16)tensor(int16)tensor(int32)tensor(int64), tensor(int8)tensor(uint16)tensor(uint32)tensor(uint64)tensor(uint8)) : Constrain input and output types to all numeric tensors.

Example

All these exemples are snippets PNG, you can drop these Snippet onto the block diagram and get the depicted code added to your VI (Do not forget to install Deep Learning library to run it).
Table of Contents