-
Quick start
-
API
-
-
-
-
-
-
- Dense
- PReLU 2D
- PReLU 3D
- PReLU 4D
- PReLU 5D
- AdditiveAttention
- Attention
- MutiHeadAttention
- Conv1D
- Conv2D
- Conv3D
- ConvLSTM1D
- ConvLSTM2D
- ConvLSTM3D
- Conv1DTranspose
- Conv2DTranspose
- Conv3DTranspose
- DepthwiseConv2D
- SeparableConv1D
- SeparableConv2D
- Embedding
- BatchNormalization
- LayerNormalization
- Bidirectional
- GRU
- LSTM
- SimpleRNN
- Show All Articles ( 12 ) Collapse Articles
-
- Dense
- PReLU 2D
- PReLU 3D
- PReLU 4D
- PReLU 5D
- AdditiveAttention
- Attention
- MultiHeadAttention
- Conv1D
- Conv2D
- Conv3D
- ConvLSTM1D
- ConvLSTM2D
- ConvLSTM3D
- Conv1DTranspose
- Conv2DTranspose
- Conv3DTranspose
- DepthwiseConv2D
- SeparableConv1D
- SeparableConv2D
- Embedding
- BatchNormalization
- LayerNormalization
- Bidirectional
- GRU
- LSTM
- SimpleRNN
- Show All Articles ( 12 ) Collapse Articles
-
-
- Dense
- AdditiveAttention
- Attention
- MultiHeadAttention
- BatchNormalization
- LayerNormalization
- Bidirectional
- GRU
- LSTM
- SimpleRNN
- Conv1D
- Conv2D
- Conv3D
- Conv1DTranspose
- Conv2DTranspose
- Conv3DTranspose
- ConvLSTM1D
- ConvLSTM2D
- ConvLSTM3D
- DepthwiseConv2D
- SeparableConv1D
- SeparableConv2D
- Embedding
- PReLU 2D
- PReLU 3D
- PReLU 4D
- PReLU 5D
- Show All Articles ( 12 ) Collapse Articles
-
-
- Dense
- Embedding
- AdditiveAttention
- Attention
- MultiHeadAttention
- Conv1D
- Conv2D
- Conv3D
- ConvLSTM1D
- ConvLSTM2D
- ConvLSTM3D
- Conv1DTranspose
- Conv2DTranspose
- Conv3DTranspose
- DepthwiseConv2D
- SeparableConv1D
- SeparableConv2D
- BatchNormalization
- LayerNormalization
- PReLU 2D
- PReLU 3D
- PReLU 4D
- PReLU 5D
- Bidirectional
- GRU
- LSTM
- RNN (GRU)
- RNN (LSTM)
- RNN (SimpleRNN)
- SimpleRNN
- Show All Articles ( 15 ) Collapse Articles
-
- Dense
- Embedding
- AdditiveAttention
- Attention
- MultiHeadAttention
- Conv1D
- Conv2D
- Conv3D
- ConvLSTM1D
- ConvLSTM2D
- ConvLSTM3D
- Conv1DTranspose
- Conv2DTranspose
- Conv3DTranspose
- DepthwiseConv2D
- SeparableConv1D
- SeparableConv2D
- BatchNormalization
- LayerNormalization
- PReLU 2D
- PReLU 3D
- PReLU 4D
- PReLU 5D
- Bidirectional
- GRU
- LSTM
- RNN (GRU)
- RNN (LSTM)
- RNN (SimpleRNN)
- SimpleRNN
- Show All Articles ( 15 ) Collapse Articles
-
-
-
- Dense
- Embedding
- AdditiveAttention
- Attention
- MultiHeadAttention
- Conv1D
- Conv2D
- Conv3D
- ConvLSTM1D
- ConvLSTM2D
- ConvLSTM3D
- Conv1DTranspose
- Conv2DTranspose
- Conv3DTranspose
- DepthwiseConv2D
- SeparableConv1D
- SeparableConv2D
- BatchNormalization
- LayerNormalization
- PReLU 2D
- PReLU 3D
- PReLU 4D
- PReLU 5D
- Bidirectional
- GRU
- LSTM
- RNN (GRU)
- RNN (LSTM)
- RNN (SimpleRNN)
- SimpleRNN
- Show All Articles ( 15 ) Collapse Articles
-
- Dense
- Embedding
- AdditiveAttention
- Attention
- MultiHeadAttention
- Conv1D
- Conv2D
- Conv3D
- ConvLSTM1D
- ConvLSTM2D
- ConvLSTM3D
- Conv1DTranspose
- Conv2DTranspose
- Conv3DTranspose
- DepthwiseConv2D
- SeparableConv1D
- SeparableConv2D
- BatchNormalization
- LayerNormalization
- PReLU 2D
- PReLU 3D
- PReLU 4D
- PReLU 5D
- Bidirectional
- GRU
- LSTM
- RNN (GRU)
- RNN (LSTM)
- RNN (SimpleRNN)
- SimpleRNN
- Show All Articles ( 15 ) Collapse Articles
-
-
-
-
- Add
- AdditiveAttention
- AlphaDropout
- Attention
- Average
- AvgPool1D
- AvgPool2D
- AvgPool3D
- BatchNormalization
- Bidirectional
- Concatenate
- Conv1D
- Conv1DTranspose
- Conv2D
- Conv2DTranspose
- Conv3D
- Conv3DTranspose
- ConvLSTM1D
- ConvLSTM2D
- ConvLSTM3D
- Cropping1D
- Cropping2D
- Cropping3D
- Dense
- DepthwiseConv2D
- Dropout
- Embedding
- Flatten
- GaussianDropout
- GaussianNoise
- GlobalAvgPool1D
- GlobalAvgPool2D
- GlobalAvgPool3D
- GlobalMaxPool1D
- GlobalMaxPool2D
- GlobalMaxPool3D
- GRU
- Input
- LayerNormalization
- LSTM
- MaxPool1D
- MaxPool2D
- MaxPool3D
- MultiHeadAttention
- Multiply
- Permute3D
- Reshape
- RNN
- SeparableConv1D
- SeparableConv2D
- SimpleRNN
- SpatialDropout
- Substract
- TimeDistributed
- UpSampling1D
- UpSampling2D
- UpSampling3D
- ZeroPadding1D
- ZeroPadding2D
- ZeroPadding3D
- Show All Articles ( 45 ) Collapse Articles
-
- AlphaDropout
- AvgPool1D
- AvgPool2D
- AvgPool3D
- BatchNormalization
- Bidirectional
- Conv1D
- Conv1DTranspose
- Conv2D
- Conv2DTranspose
- Conv3D
- Conv3DTranspose
- Cropping1D
- Cropping2D
- Cropping3D
- Dense
- DepthwiseConv2D
- Dropout
- Embedding
- Flatten
- GaussianDropout
- GaussianNoise
- GlobalAvgPool1D
- GlobalAvgPool2D
- GlobalAvgPool3D
- GlobalMaxPool1D
- GlobalMaxPool2D
- GlobalMaxPool3D
- GRU
- LayerNormalization
- LSTM
- MaxPool1D
- MaxPool2D
- MaxPool3D
- Permute3D
- Reshape
- RNN
- SeparableConv1D
- SeparableConv2D
- SimpleRNN
- SpatialDropout
- UpSampling1D
- UpSampling2D
- UpSampling3D
- ZeroPadding1D
- ZeroPadding2D
- ZeroPadding3D
- Show All Articles ( 32 ) Collapse Articles
-
-
-
- Resume
- Accuracy
- BinaryAccuracy
- BinaryCrossentropy
- BinaryIoU
- CategoricalAccuracy
- CategoricalCrossentropy
- CategoricalHinge
- CosineSimilarity
- FalseNegatives
- FalsePositives
- Hinge
- Huber
- IoU
- KLDivergence
- LogCoshError
- Mean
- MeanAbsoluteError
- MeanAbsolutePercentageError
- MeanIoU
- MeanRelativeError
- MeanSquaredError
- MeanSquaredLogarithmicError
- MeanTensor
- OneHotIoU
- OneHotMeanIoU
- Poisson
- Precision
- PrecisionAtRecall
- Recall
- RecallAtPrecision
- RootMeanSquaredError
- SensitivityAtSpecificity
- SparseCategoricalAccuracy
- SparseCategoricalCrossentropy
- SparseTopKCategoricalAccuracy
- Specificity
- SpecificityAtSensitivity
- SquaredHinge
- Sum
- TopKCategoricalAccuracy
- TrueNegatives
- TruePositives
- Show All Articles ( 28 ) Collapse Articles
-
- Resume
- Constant
- GlorotNormal
- GlorotUniform
- HeNormal
- HeUniform
- Identity
- LecunNormal
- LecunUniform
- Ones
- Orthogonal
- RandomNormal
- RandomUnifom
- TruncatedNormal
- VarianceScaling
- Zeros
- Show All Articles ( 1 ) Collapse Articles
-
MultiHeadAttention
Description
Gets the weights of the MultiHeadAttention layer selected by the name. Type : polymorphic.
Input parameters
Model in : model architecture.
name : string, name of layer.
Output parameters
Model out : model architecture.
weights_info : cluster
index : integer, index of layer.
name : string, name of layer.
weights : cluster
output_bias : array, 1D values. output_bias = query[2].
output_kernel : array, 3D values. output_kernel = [num_heads, value_dim, query[2]].
value_bias : array, 2D values. value_bias = [num_heads, value_dim].
value_kernel : array, 3D values. value_kernel = [value[2], num_heads, value_dim].
key_bias : array, 2D values. key_bias = [num_heads, key_dim].
key_kernel : array, 3D values. key_kernel = [key[2], num_heads, key_dim].
query_bias : array, 2D values. query_bias = [num_heads, key_dim].
query_kernel : array, 3D values. query_kernel = [query[2], num_heads, key_dim].
Dimension
- output_bias = query[2]
The size of output_bias depends on the query input size of the MultiHeadAttention layer. It will take the value at index 2 of the query size.
For example, if query has a size of [batch_size = 5, Tq = 3, dim = 2] then the size of output_bias is [dim = 2].
Another example, if query has a size of [batch_size = 10, Tq = 9, dim = 5] then the size of output_bias is [dim = 5].
- output_kernel = [num_heads, value_dim, query[2]]
The size of output_kernel depends on the query input size, the num_heads parameter and the value_dim parameter of the MultiHeadAttention layer. For the input size of query it will take the value at index 2.
For example, if query has a size of [batch_size = 5, Tq = 3, dim = 2], num_heads a value of 8 and value_dim a value of 5 then the output_kernel size is [num_heads = 8, value_dim = 5, dim = 2].
Another example, if query has a size of [batch_size = 10, Tq = 9, dim = 4], num_heads a value of 6 and value_dim a value of 5 then the output_kernel size is [num_heads = 6, value_dim = 5, dim = 4].
- value_bias = [num_heads, value_dim]
The size of value_bias depends on the num_heads parameter and the value_dim parameter of the MultiHeadAttention layer. For example, if num_heads has a value of 8 and value_dim a value of 5 then the size of value_bias is [8, 5]. Another example, if num_heads has a value of 6 and value_dim a value of 4 then the size of value_bias is [6, 4].
- value_kernel = [value[2], num_heads, value_dim]
The size of value_kernel depends on the input size of value, the num_heads parameter and the value_dim parameter of the MultiHeadAttention layer. For the input size of value, it will take the value at index 2.
For example, if value has a size of [batch_size = 5, Tv = 3, dim = 2], num_heads a value of 8 and value_dim a value of 5, then the size of value_kernel is [dim = 2, num_heads = 8, value_dim = 5].
Another example, if value has a size of [batch_size = 10, Tv = 9, dim = 4], num_heads a value of 6 and value_dim a value of 5, then the size of value_kernel is [dim = 4, num_heads = 6, value_dim = 5].
- key_bias = [num_heads, key_dim]
The size of key_bias depends on the num_heads parameter and the key_dim parameter of the MultiHeadAttention layer.
For example, if num_heads has a value of 8 and key_dim a value of 5, the size of key_bias is [num_heads = 8, key_dim = 5].
Another example, if num_heads has a value of 6 and key_dim a value of 4, the size of key_bias is [num_heads = 6, key_dim = 4].
- key_kernel = [key[2], num_heads, key_dim]
The size of key_kernel depends on the input size of key, the num_heads parameter and the key_dim parameter of the MultiHeadAttention layer. For the input size of key, it will take the value at index 2.
For example, if key has a size of [batch_size = 5, Tv = 3, dim = 2], num_heads a value of 8 and key_dim a value of 5, then the size of key_kernel is [dim = 2, num_heads = 8, key_dim = 5].
Another example, if key has a size of [batch_size = 10, Tv = 9, dim = 4], num_heads a value of 6 and key_dim a value of 5, then the size of key_kernel is [dim = 4, num_heads = 6, key_dim = 5].
- query_bias = [num_heads, key_dim]
The size of query_bias depends on the num_heads parameter and the key_dim parameter of the MultiHeadAttention layer.
For example, if num_heads has a value of 8 and key_dim a value of 5, the size of query_bias is [num_heads = 8, key_dim = 5].
Another example, if num_heads has a value of 6 and key_dim a value of 4, the size of query_bias is [num_heads = = 6, key_dim = 4].
- query_kernel = [query[2], num_heads, key_dim]
The size of query_kernel depends on the query input size, the num_heads parameter and the key_dim parameter of the MultiHeadAttention layer. For the query input size, it will take the value at index 2.
For example, if query has a size of [batch_size = 5, Tq = 3, dim = 2], num_heads a value of 8 and key_dim a value of 5, then the size of query_kernel is [dim = 2, num_heads = 8, key_dim = 5].
Another example, if query has a size of [batch_size = 10, Tq = 9, dim = 4], num_heads a value of 6 and key_dim a value of 5, then the size of query_kernel is [dim = 4, num_heads = 6, key_dim = 5].