Welcome to our Support Center

Conv2DTranspose

Description

Returns the Conv2DTranspose layer weights. Type : polymorphic.

 

Input parameters

 

 weights : cluster

 index : integer, index of layer.
 name : string, name of layer.
 weight : variant, weight of layer.

Output parameters

 

 weights_info : cluster

 index : integer, index of layer.
 name : string, name of layer.
 weights : cluster

 filters : array, 4D values. filters = [n_filters, channels, size[0], size[1]].
 biases : array, 1D values. biases = [n_filters].

Dimension

  • filters = [n_filters, channel, size[0], size[1]]

The size of filters depends on the input of the Conv2DTranspose layer and the parameters n_filters and size.
For example, if the input of the layer has a size of [batch_size = 10, channel = 8, row = 5, column = 5], n_filters has the value 6 and size the value [3, 3] then filters will have a size of [n_filters = 6, channel = 8, size[0] = 3, size[1] = 3].

 

  • biases = [n_filters]

The size of biases depends on the parameter n_filters of the Conv2DTranspose layer.

Example

All these exemples are snippets PNG, you can drop these Snippet onto the block diagram and get the depicted code added to your VI (Do not forget to install HAIBAL library to run it).

Table of Contents