Welcome to our Support Center

Convolution 1D Transpose

Description

Setup and add the convolution 1D transpose layer into the model during the definition graph step. Type : polymorphic.

 

Input parameters

 

Model in : model architecture.

Β Parameters :Β layer parameters.

Β filters :Β integer, the dimensionality of the output space.
Default value β€œ3”.
Β sizeΒ :Β integer, specify the length of the 1D convolution window.
Default value β€œ3”.
Β strideΒ :Β integer, specify the stride length of the convolution.
Default value β€œ1”.
Β dilation rate :Β integer, specifying the dilation rate to use for dilated convolution.
Default value β€œ1”.
Β explicit paddingΒ :Β array,Β specifies the number of pixels to pad at the beginning and end of each spatial axis. Batch and channel axes are not padded. Only used when padding =Β EXPLICIT.
Default value β€œempty”.
Β ActivationΒ :Β cluster,Β activation function to use.
Β use bias? :Β boolean, whether the layer uses a bias vector.
Default value β€œTrue”.
Β paddingΒ :Β enum,Β type of padding to apply.
Default value β€œVALID”.
Β data format :Β enum, one ofΒ channels_lastΒ orΒ channels_firstΒ (default) . The ordering of the dimensions in the inputs.Β channel_lastΒ corresponds to inputs with shapeΒ (batch, steps, features)Β whileΒ channels_firstΒ corresponds to inputs with shapeΒ (batch, features, steps).
Default value β€œchannels_first”.
Β Filter InitializerΒ :Β cluster,Β initializer for the convolution kernel.
Β Bias InitializerΒ :Β cluster,Β initializer for the bias vector.
Β Filter RegularizerΒ :Β cluster,Β optional regularizer for the convolution kernel.
Β Bias RegularizerΒ :Β cluster,Β optional regularizer for the bias vector.
Β training?Β :Β boolean, whether the layer is in training mode (can store data for backward).
Default value β€œTrue”.
Β store?Β :Β boolean, whether the layer stores the last iteration gradient (accessible via the β€œget_gradients” function).
Default value β€œFalse”.
Β update?Β :Β boolean, whether the layer’s variables should be updated during backward. Equivalent to freeze the layer.
Default value β€œTrue”.
Β lda coeff :Β float, defines the coefficient by which the loss derivative will be multiplied before being sent to the previous layer (since during the backward run we go backwards).
Default value β€œ1”.

​

name (optional) : string, name of the layer.

 

Output parameters

 

Model out : model architecture.

Dimension

Input shape

3-Dimension tensor with shape : [batch_size, channel, width] (default “channel_first” parameters).
In case of “channel_last” setup, forward function will input shape [batch_size, width, channels].

 

Output shape

Same shape as input 3-Dimension tensor with shape : [batch_size, channel, width] (default “channel_first” parameters).
In case of “channel_last” setup, forward function will input shape [batch_size, width, channel].

Example

All these exemples are snippets PNG, you can drop these Snippet onto the block diagram and get the depicted code added to your VI (Do not forget to install Deep Learning library to run it).

Convolution 1D Transpose layer

1 – Generate a set of data

We generate an array of data of type single and shape [batch_size, channel, width] (channel first default layer configuration).
In case of channel last layer configuration, shape is [batch_size, width, channel].

2 – Define graph

First, we define the first layer of the graph which is an Input layer (explicit input layer method). This layer is setup as an input array shaped [channel = 5, width = 128].
Then we add to the graph the Conv1DTranspose layer.

3 – Run graph

We call the forward method and retrieve the result with the β€œPrediction 3D” method.
This method returns two variables, the first one is the layer information (cluster composed of the layer name, the graph index and the shape of the output layer) and the second one is the prediction with a shape of [batch_size, filter, new_width].

 

Convolution 1D Transpose layer, batch and dimension

1 – Generate a set of data

We generate an array of data of type single and shape [number of batch = 9, batch_size = 10, channel = 5, width = 128] (channel first default layer configuration).
In case of channel last layer configuration, shape is [batch_size, width, channel].

2 – Define graph

First, we define the first layer of the graph which is an Input layer (explicit input layer method). This layer is setup as an input array shaped [channel = 5, width = 128].
Then we add to the graph the Conv1DTranspose layer.

3 – Run graph

We call the forward method and retrieve the result with the β€œPrediction 3D” method.
This method returns two variables, the first one is the layer information (cluster composed of the layer name, the graph index and the shape of the output layer) and the second one is the prediction with a shape of [batch_size, filter, new_width].

 

Table of Contents