Welcome to our Support Center

BatchNormalization

Description

Returns the BatchNormalization layer weights. Type : polymorphic.

 

Input parameters

 

Β weights : cluster

Β index :Β integer,Β index of layer.
Β name :Β string,Β name of layer.
Β weight :Β variant,Β weight of layer.

Output parameters

 

Β weights_info : cluster

Β index :Β integer,Β index of layer.
Β name :Β string,Β name of layer.
Β weights : cluster

gamma : array, 1D values. gamma = [axis].
beta : array, 1D values. beta = [axis].
moving_mean : array, 1D values. moving_mean = [axis].
moving_var : array, 1D values. moving_var = [axis].

Dimension

  • gamma = [axis]

The size depends on the axis parameter of the BatchNormalization layer and its input.
For example if the input of the layer has a size of [batch_size = 10, input_dim1 = 5, input_dim2 = 4, input_dim3 = 2] and the axis parameter has the value 1 then gamma will have a size of [input_dim1 = 5].
Another example if the axis parameter has the value 3 then gamma will have a size of [input_dim3 = 2].

 

  • beta = [axis]

The beta size is based on the same principle as the gamma size.

 

  • moving_mean = [axis]

The moving_mean size is based on the same principle as the gamma size.

 

  • moving_var = [axis]

The moving_var size is based on the same principle as the gamma size.

Example

All these exemples are snippets PNG, you can drop these Snippet onto the block diagram and get the depicted code added to your VI (Do not forget to install HAIBAL library to run it).

Table of Contents